Product Description

Product Description

 

 

 

 

Detailed Photos

 

 

 

Product Parameters

                                                                                                                                                                            units:mm 

specification outside diameter total length inner diameter
m1 50 40 22
m1.25
m1.5 63 50 27
m1.75
m2 63
m2.25
m2.5 70 70
m2.75
m3 80 80 32
m3.25
m3.5
m3.75 90 90
m4
m4.25
m4.5
m5 100 100
m5.5 112 112 40
m6
m6.5 125
 
125
m7
m8 130 130

 

Note:

Special worm gear hobs with circular tooth, double pitch and involute etc. can also be ordered.
Hob cutter series :  gear hob , pre-shaving gear hob, pre-grind gear hob, involute spline hob, parallel side spline hob, ground sprocket hob , and timing pulley hob.

Material Introduction:

 A. W6Mo5Cr4V2 (GB)  M2( ASTM), S6-5-2(DIN), SKH51(JIS)
   chemical composition:C 0.85, Si 0.38, Mn 0.35, P≤0.030, S≤0.030,  Cr 4.10, W 6.00, Mo 4.80 V 1.85
   main application:It is widely used for making all kinds of cutters and durability cold-work die

 B. W6Mo5Cr4V2Co5 (GB), M35( ASTM), 1.3243(DIN), SKH55(JIS)
   chemical composition: C 0.93, Si 0.38, Mn 0.35, P≤0.030, S≤0.030, Cr 4.10, W 6.30, Mo 4.80 V 1.85, Co 5.00
   main application:It is often used for making blades with  high-speed and great cutting difficulty as it’s good abrasive resistance

 W6Mo5Cr4V2(M2),W9Mo3Cr4V(W9),W18Cr4V(W18),W6Mo5Cr4V2Al(M2Al),W6Mo5Cr4V2Co5(M35),W2Mo9Cr4VCo8(M42),W4Mo3Cr4VSi(4341),W4Mo2Cr4VSi(4241)

Packaging & Shipping

 

Packaging & Shipping:
1.For the loose cargo we will packing by wooden box
2.For the full container loading we are packing the machine by film and some on pallet accordingly
3.We can shipping the goods by air or by sea
4.We will send pictures of cargo loading to our client to check and keep recording
5.We can send cargo to client’s warehouse to loading

 

Company Profile

.

 

FAQ

Q1: Are you trading company or manufacturer ?
A1: Our factory is a professional manufacturer of machinery blades.Our blades are mainly used in: packaging, paper, rubber, optoelectronics, electronics, light industry, printing, metallurgy, and other machines.
Q2: what is your blade hardness?
A2: Different material has different hardness, from 48HRC to 68HRC, we both have. You can advice the function of your blade, we can provide suitbale suggestion for you.
Q3: What is your advantage if I choose you?
A3: 1. End manufacturer with competitive factory price.
Q4: How long is your delivery time?
A4: Generally it is 3 days if the goods are in stock. or it is 15-45 days if the goods are not in stock, it is according to quantity.
Q5: Do you provide samples ? is it free or extra?
A5: Yes, we could offer the sample for free charge but freight cost by yourself.
Q6: What is your terms of payment ?
A6:100%, or 50% T/T in advance, balance before shipment.Also can pay by Credit Card,Paypal so on.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Provided
Warranty: Provided
Condition: New
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

worm gear

Can worm gears be used in precision manufacturing equipment?

Yes, worm gears can be used in precision manufacturing equipment. Here’s a detailed explanation of their use in precision manufacturing:

1. Precision Motion Control: Worm gears can provide precise motion control in manufacturing equipment. Their design allows for high gear ratios, which enables fine adjustments and precise positioning. This is particularly useful in applications where accurate and repeatable movement is required, such as CNC machines, robotic arms, and coordinate measuring machines (CMMs).

2. Load Holding and Backdriving Prevention: Worm gears have a self-locking characteristic, meaning they can hold loads in position without the need for additional brakes or clutches. This feature is advantageous in precision manufacturing equipment where holding a position is critical. The self-locking property also helps prevent backdriving, ensuring stability and accuracy during operation.

3. Compact Design: Worm gears have a compact design, which can be beneficial in space-constrained manufacturing equipment. Their worm and worm wheel configuration allows for a compact footprint, making them suitable for applications where size limitations exist.

4. High Torque Transmission: Worm gears can transmit high torque, making them suitable for heavy-duty precision manufacturing equipment. The meshing of the worm and worm wheel generates a large contact area, enabling efficient power transfer and load handling capabilities.

5. Reduced Noise and Vibration: Worm gears operate with a sliding motion rather than a rolling motion, resulting in reduced noise and vibration levels. This characteristic is advantageous in precision manufacturing equipment, as it helps maintain a quieter working environment and minimizes potential disturbances that could affect the precision of the manufacturing process.

6. Lubrication and Maintenance: Proper lubrication is crucial for the efficient and reliable operation of worm gears in precision manufacturing equipment. Lubricants help reduce friction and wear between the gear teeth, ensuring smooth and accurate motion. Regular maintenance and lubrication schedules should be followed to optimize gear performance and extend their service life.

While worm gears offer several advantages in precision manufacturing equipment, it’s important to consider the specific requirements of the application. Factors such as gear ratio, efficiency, backlash, and operating conditions should be carefully evaluated to ensure that worm gears are the appropriate choice for achieving the desired precision and performance.

Overall, worm gears can be successfully utilized in precision manufacturing equipment, providing precise motion control, load holding capabilities, compactness, and high torque transmission. When properly selected, installed, and maintained, worm gears can contribute to the accuracy, reliability, and efficiency of precision manufacturing processes.

worm gear

What are the environmental considerations when using worm gears?

When using worm gears, there are several environmental considerations to keep in mind. Here’s a detailed explanation of these considerations:

  1. Lubrication: Proper lubrication is essential for the efficient and reliable operation of worm gears. Lubricants help reduce friction and wear between the gear teeth, resulting in improved efficiency and extended gear life. When selecting lubricants, it is important to consider their environmental impact. Environmentally friendly lubricants, such as biodegradable or synthetic lubricants with low toxicity, can be used to minimize the potential harm to the environment in case of leakage or accidental spills.
  2. Leakage and contamination: Worm gear systems are susceptible to lubricant leakage, which can cause environmental pollution. It is important to ensure that the gear housing is properly sealed to prevent lubricant leakage into the environment. Regular inspections and maintenance should be carried out to detect and repair any leaks promptly. Additionally, measures should be taken to prevent contaminants such as dust, dirt, and water from entering the gear system, as they can degrade the lubricant and affect the gear performance.
  3. Energy efficiency: Worm gears, like any mechanical power transmission system, consume energy during operation. It is important to consider energy efficiency when selecting and designing worm gear systems. Optimal gear design, proper gear selection, and efficient lubrication practices can contribute to reducing energy consumption and minimizing the environmental impact associated with energy use.
  4. Noise and vibration: Worm gears can generate noise and vibration during operation. Excessive noise can contribute to noise pollution, while high vibration levels can impact the surrounding equipment and structures. To mitigate these effects, it is important to design and manufacture worm gears with low noise and vibration characteristics. This can involve careful gear design, proper lubrication, and the use of vibration-damping materials or mechanisms.
  5. End-of-life considerations: At the end of their service life, worm gear components may need to be replaced or recycled. Disposal of worn-out gears should be done in accordance with applicable environmental regulations. Whenever possible, recycling or reusing gear components can help reduce waste and minimize the environmental impact associated with the disposal of gear materials.
  6. Environmental regulations: Compliance with environmental regulations and standards is crucial when using worm gears. Different regions may have specific regulations governing the use and disposal of lubricants, materials, and manufacturing processes associated with gear systems. It is important to stay informed about these regulations and ensure compliance to avoid any adverse environmental impact and legal consequences.

By considering these environmental factors, it is possible to minimize the ecological footprint of worm gear systems and promote sustainable practices in their use and maintenance. This includes selecting environmentally friendly lubricants, implementing proper sealing and maintenance procedures, optimizing energy efficiency, and adhering to relevant environmental regulations.

worm gear

Understanding Worm Gears and Their Operation

A worm gear is a type of mechanical gear that consists of a threaded screw-like component (called the worm) and a toothed wheel (called the worm gear). It is used to transmit motion between non-intersecting and perpendicular shafts. Here’s how it works:

The worm, typically in the form of a cylindrical rod with a helical thread, meshes with the teeth of the worm gear. When the worm is rotated, its threads engage with the teeth of the worm gear, causing the gear to rotate. The direction of rotation of the worm gear is perpendicular to the axis of the worm.

One significant feature of worm gears is their ability to provide high gear reduction ratios. The number of teeth on the worm gear relative to the number of threads on the worm determines the reduction ratio. This makes worm gears suitable for applications where high torque and low-speed rotation are required.

Worm gears are commonly used in various mechanical systems, such as conveyor systems, lifts, automotive steering mechanisms, and more. Their unique design also provides a self-locking feature: when the system is not actively rotating the worm, the gear cannot easily backdrive the worm due to the angle of the threads, providing mechanical advantage and preventing reverse motion.

China Hot selling Factory Machining Worm Gear as Customers′ Request gear patrolChina Hot selling Factory Machining Worm Gear as Customers′ Request gear patrol
editor by CX 2024-03-01